Vitamin D | Vitamin D3 | Cholecalciferol
Supports bone health*
Supports cognitive function*
Supports a healthy mood*
Supports cardiovascular health*
Supports general immune health*
Supports upper respiratory health*
Vitamin D is an essential fat-soluble vitamin. It is found in animal foods—fatty fish are a good source—where, because it is fat-soluble, it concentrates in fat. But a large amount of the body stores of vitamin D are not obtained from the diet; it is produced from skin exposure to sunlight. This is true for humans and animals. In addition to fatty fish, other animal foods such as dairy and eggs will have varying amounts of vitamin D depending on whether the food has been fortified with vitamin D (most milk has been) and whether the animal the product originated from had sufficient exposure to sunlight (or ate food that did). In addition to milk, some milk alternatives (such as beverages made from soy, almond, or oats), ready-to-eat breakfast cereals, orange juices, margarine and other food products can be fortified with vitamin D. Mushrooms can also be a good source of vitamin D, but again this will be dependent on their exposure to sunlight. Vitamin D is usually supplemented as either vitamin D2 (Ergocalciferol) or D3 (Cholecalciferol). Of the two, vitamin D3 is considered superior for supporting healthy vitamin D levels[1]. Vitamin D is essential for general health, and is especially important for supporting the health of bones, the brain and nervous system, the heart, and the immune system.*
Vitamin D3 is produced from wild crafted lichen, which is responsibly harvested from a sustainable source.
Vitamin D3 is Non-GMO, gluten-free, certified Kosher, and vegan
Since much of the body stores of vitamin D are made from sunlight exposure, and the intensity of sunlight varies seasonally, especially in more northern locations, maintaining optimal vitamin D status throughout the year can be a challenge. A combination of a diet with insufficient vitamin D (estimated to occur in 95% of adults[2]) and inadequate sun exposure exacerbates this challenge. Because of these challenges, many adults do not have adequate vitamin D status. To ensure against inadequacy, in the United States the recommended dietary allowance for adults is currently set at 600-800 IU/day, with the exact amount varying by age; however, a dose of 800 IU is considered 100% of the daily value (DV) for supplement labeling. Vitamin D follows hormetic principles (see Neurohacker Dosing Principles). The key point is that vitamin D3 is not a “more is better” vitamin. In fact, for general immune support and upper respiratory health, as an example, evidence suggests that an average person would be better off taking amounts closer to the DV than amounts several times higher[3]. When determining the dose of vitamin D3 to include in a product, our goal is to ensure we’ve supplied enough to support healthy function, while being within the hormetic range. We also take into account that a person may be taking more than one of our products, and use a dose that would still ensure they would be within this range if this is the case. Taking vitamin D (and other fat-soluble compounds) with food that contains fat is recommended for better absorption.*
Supports brain function*
Supports memory [4,5]
Supports working memory [6]
Supports cognitive health [7–9]
Supports the expression of neurotrophic factors (NT-3, BDNF, GDNF, CNTF, and NGF) [10–12]
Supports neurogenesis [6,10]
Supports neuronal structure [13–15] [7,16]
Supports brain antioxidant defenses and counters oxidative stress [7,17–19]
Supports healthy neural immune signaling [7,14,20]
Supports neuroprotective functions [7,13,17,18,21,22]
Supports a healthy mood*
Supports positive affect [19,23–25]
Supports a calm/relaxed mood [24–26]
Supports healthy immune function*
Supports general immune health [3,27,28]
Supports innate immunity [29,30]
Supports adaptive immunity [31–38]
Supports mucosal immunity [39–47]
Supports immune tolerance [31,33–38,48–52]
Supports immune balance [31,53]
Supports healthy dendritic cell function [29,30]
Supports healthy natural killer cell function [30]
Supports healthy microglia function [14,54–59]
Supports healthy T cell function [31–38]
Supports healthy B cell function [31,33,34,48–51]
Supports a healthy gut microbiota*
Supports a healthy gut microbiota [60–66]
Supports cardiometabolic health*
Supports healthy cardiovascular function [67–70]
Supports healthy insulin levels [19,71,72]
Supports healthy glucose levels [19]
Supports healthy aging and longevity*
Supports balance during aging (i.e., may help reduce risk of falls) [73,74]
Supports healthy bone function during aging [74,75]
Supports healthy muscle function during aging [74]
Supports healthspan extension (Caenorhabditis elegans) [76]
Supports mitochondrial function [77,78]
Supports Nrf2 function [79–86]
Complementary ingredients*
Vitamin D is involved in intestinal absorption and homeostasis of minerals such as calcium and magnesium [87,88]
Vitamin K is potentially complementary to vitamin D [89]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
REFERENCES
[1] P. Autier, S. Gandini, P. Mullie, J. Clin. Endocrinol. Metab. 97 (2012) 2606–2613.
[2] C.A. Reider, R.-Y. Chung, P.P. Devarshi, R.W. Grant, S. Hazels Mitmesser, Nutrients 12 (2020).
[3] A.R. Martineau, D.A. Jolliffe, L. Greenberg, J.F. Aloia, P. Bergman, G. Dubnov-Raz, S. Esposito, D. Ganmaa, A.A. Ginde, E.C. Goodall, C.C. Grant, W. Janssens, M.E. Jensen, C.P. Kerley, I. Laaksi, S. Manaseki-Holland, D. Mauger, D.R. Murdoch, R. Neale, J.R. Rees, S. Simpson, I. Stelmach, G. Trilok Kumar, M. Urashima, C.A. Camargo, C.J. Griffiths, R.L. Hooper, Health Technol. Assess. 23 (2019) 1–44.
[4] J.A. Pettersen, Exp. Gerontol. 90 (2017) 90–97.
[5] H. Darwish, R. Haddad, S. Osman, S. Ghassan, B. Yamout, H. Tamim, S. Khoury, Sci. Rep. 7 (2017) 45926.
[6] M. Morello, V. Landel, E. Lacassagne, K. Baranger, C. Annweiler, F. Féron, P. Millet, Mol. Neurobiol. 55 (2018) 6463–6479.
[7] P. Yamini, R.S. Ray, K. Chopra, Inflammopharmacology 26 (2018) 39–55.
[8] Z. Alrefaie, A. ’em Alhayani, Behav. Brain Res. 287 (2015) 156–162.
[9] M.R. Durk, K. Han, E.C.Y. Chow, R. Ahrens, J.T. Henderson, P.E. Fraser, K.S. Pang, J. Neurosci. 34 (2014) 7091–7101.
[10] H.A. Shirazi, J. Rasouli, B. Ciric, A. Rostami, G.-X. Zhang, Exp. Mol. Pathol. 98 (2015) 240–245.
[11] J. Brown, J.I. Bianco, J.J. McGrath, D.W. Eyles, Neurosci. Lett. 343 (2003) 139–143.
[12] P. Naveilhan, I. Neveu, D. Wion, P. Brachet, Neuroreport 7 (1996) 2171–2175.
[13] M. Goudarzvand, M. Javan, J. Mirnajafi-Zadeh, S. Mozafari, T. Tiraihi, Cell. Mol. Neurobiol. 30 (2010) 289–299.
[14] S. Wergeland, Ø. Torkildsen, K.-M. Myhr, L. Aksnes, S.J. Mørk, L. Bø, PLoS One 6 (2011) e26262.
[15] J.-F. Chabas, D. Stephan, T. Marqueste, S. Garcia, M.-N. Lavaut, C. Nguyen, R. Legre, M. Khrestchatisky, P. Decherchi, F. Feron, PLoS One 8 (2013) e65034.
[16] P.W. Landfield, L. Cadwallader-Neal, Neurobiol. Aging 19 (1998) 469–477.
[17] K. Shinpo, S. Kikuchi, H. Sasaki, Journal of Neuroscience Research 62 (2000) 374–382.
[18] W. Jang, H.-H. Park, K.-Y. Lee, Y.J. Lee, H.-T. Kim, S.-H. Koh, Mol. Neurobiol. 51 (2015) 558–570.
[19] Z. Sepehrmanesh, F. Kolahdooz, F. Abedi, N. Mazroii, A. Assarian, Z. Asemi, A. Esmaillzadeh, J. Nutr. 146 (2016) 243–248.
[20] F.E. Nashold, D.J. Miller, C.E. Hayes, J. Neuroimmunol. 103 (2000) 171–179.
[21] J.Y. Wang, J.N. Wu, T.L. Cherng, B.J. Hoffer, H.H. Chen, C.V. Borlongan, Y. Wang, Brain Res. 904 (2001) 67–75.
[22] L.D. Brewer, V. Thibault, K.C. Chen, M.C. Langub, P.W. Landfield, N.M. Porter, J. Neurosci. 21 (2001) 98–108.
[23] G. Högberg, S.A. Gustafsson, T. Hällström, T. Gustafsson, B. Klawitter, M. Petersson, Acta Paediatr. 101 (2012) 779–783.
[24] S. Fazelian, R. Amani, Z. Paknahad, S. Kheiri, L. Khajehali, Int. J. Prev. Med. 10 (2019) 17.
[25] S. Penckofer, M. Byrn, W. Adams, M.A. Emanuele, P. Mumby, J. Kouba, D.E. Wallis, J Diabetes Res 2017 (2017) 8232863.
[26] A. Eid, S. Khoja, S. AlGhamdi, H. Alsufiani, F. Alzeben, N. Alhejaili, H.O. Tayeb, F.I. Tarazi, Metab. Brain Dis. 34 (2019) 1781–1786.
[27] P.-J. Martens, C. Gysemans, A. Verstuyf, A.C. Mathieu, Nutrients 12 (2020).
[28] A.-S. Vanherwegen, C. Gysemans, C. Mathieu, Endocrinol. Metab. Clin. North Am. 46 (2017) 1061–1094.
[29] M. Barragan, M. Good, J.K. Kolls, Nutrients 7 (2015) 8127–8151.
[30] Z. Al-Jaderi, A.A. Maghazachi, Toxins 5 (2013) 1932–1947.
[31] B. Terrier, N. Derian, Y. Schoindre, W. Chaara, G. Geri, N. Zahr, K. Mariampillai, M. Rosenzwajg, W. Carpentier, L. Musset, J.-C. Piette, A. Six, D. Klatzmann, D. Saadoun, C. Patrice, N. Costedoat-Chalumeau, Arthritis Res. Ther. 14 (2012) R221.
[32] A.-L. Khoo, H.J.P.M. Koenen, L.Y.A. Chai, F.C.G.J. Sweep, M.G. Netea, A.J.A.M. van der Ven, I. Joosten, PLoS One 7 (2012) e29250.
[33] G. Bock, B. Prietl, J.K. Mader, E. Höller, M. Wolf, S. Pilz, W.B. Graninger, B.M. Obermayer-Pietsch, T.R. Pieber, Diabetes. Metab. Res. Rev. 27 (2011) 942–945.
[34] B. Prietl, G. Treiber, J.K. Mader, E. Hoeller, M. Wolf, S. Pilz, W.B. Graninger, B.M. Obermayer-Pietsch, T.R. Pieber, Eur. J. Nutr. 53 (2014) 751–759.
[35] D. Bogdanou, M. Penna-Martinez, N. Filmann, T.L. Chung, Y. Moran-Auth, J. Wehrle, C. Cappel, S. Huenecke, E. Herrmann, U. Koehl, K. Badenhoop, Diabetes. Metab. Res. Rev. 33 (2017).
[36] M. Rafiee, M. Gharagozloo, A. Ghahiri, F. Mehrabian, M.R. Maracy, S. Kouhpayeh, I.L. Pieper, A. Rezaei, Iran. J. Immunol. 12 (2015) 252–262.
[37] S. Piantoni, L. Andreoli, M. Scarsi, A. Zanola, F. Dall’Ara, C. Pizzorni, M. Cutolo, P. Airò, A. Tincani, Lupus 24 (2015) 490–498.
[38] V. Giacomet, A. Vigano, V. Manfredini, C. Cerini, G. Bedogni, S. Mora, M. Borelli, D. Trabattoni, G.V. Zuccotti, HIV Clin. Trials 14 (2013) 51–60.
[39] J.M. Scott, J.B. Kazman, J. Palmer, J.P. McClung, E. Gaffney-Stomberg, H.G. Gasier, Scand. J. Med. Sci. Sports 29 (2019) 1322–1330.
[40] C.-S. He, W.D. Fraser, J. Tang, K. Brown, S. Renwick, J. Rudland-Thomas, J. Teah, E. Tanqueray, M. Gleeson, J. Sports Sci. 34 (2016) 67–74.
[41] Y. Zeng, M. Luo, L. Pan, Y. Chen, S. Guo, D. Luo, L. Zhu, Y. Liu, L. Pan, S. Xu, R. Zhang, C. Zhang, P. Wu, L. Ge, M. Noureddin, S.J. Pandol, Y.-P. Han, Am. J. Physiol. Gastrointest. Liver Physiol. 318 (2020) G542–G553.
[42] A. De Filippis, M. Fiorentino, L. Guida, M. Annunziata, L. Nastri, A. Rizzo, Int. Immunopharmacol. 47 (2017) 106–117.
[43] K. Subramanian, P. Bergman, B. Henriques-Normark, J. Innate Immun. 9 (2017) 375–386.
[44] D. Su, Y. Nie, A. Zhu, Z. Chen, P. Wu, L. Zhang, M. Luo, Q. Sun, L. Cai, Y. Lai, Z. Xiao, Z. Duan, S. Zheng, G. Wu, R. Hu, H. Tsukamoto, A. Lugea, Z. Liu, S.J. Pandol, Y.-P. Han, Front. Physiol. 7 (2016) 498.
[45] M. Roggenbuck, D. Anderson, K.K. Barfod, M. Feelisch, S. Geldenhuys, S.J. Sørensen, C.E. Weeden, P.H. Hart, S. Gorman, Respir. Res. 17 (2016) 116.
[46] K.E. Merriman, M.F. Kweh, J.L. Powell, J.D. Lippolis, C.D. Nelson, J. Steroid Biochem. Mol. Biol. 154 (2015) 120–129.
[47] N. Lopez-Lopez, I. Gonzalez-Curiel, J. Castañeda-Delgado, A. Montoya-Rosales, B. Gandara-Jasso, J.A. Enciso-Moreno, B. Rivas-Santiago, Microbes Infect. 16 (2014) 755–761.
[48] S. Agarwal, S.N. Singh, R. Kumar, R. Sehra, Indian J. Otolaryngol. Head Neck Surg. 71 (2019) 2225–2230.
[49] R. Krysiak, K. Kowalcze, B. Okopień, Pharmacol. Rep. 71 (2019) 367–373.
[50] R. Krysiak, W. Szkróbka, B. Okopień, Pharmacol. Rep. 71 (2019) 243–247.
[51] I. Buondonno, G. Rovera, F. Sassi, M.M. Rigoni, C. Lomater, S. Parisi, R. Pellerito, G.C. Isaia, P. D’Amelio, PLoS One 12 (2017) e0178463.
[52] H. Askmark, L. Haggård, I. Nygren, A.R. Punga, Eur. J. Neurol. 19 (2012) 1554–1560.
[53] F. Baeke, T. Takiishi, H. Korf, C. Gysemans, C. Mathieu, Curr. Opin. Pharmacol. 10 (2010) 482–496.
[54] L.R.C. de Oliveira, L.A.N. Mimura, T.F. de C. Fraga-Silva, L.L.W. Ishikawa, A.A.H. Fernandes, S.F.G. Zorzella-Pezavento, A. Sartori, Front. Pharmacol. 11 (2020) 161.
[55] P.W. Lee, A. Selhorst, S.G. Lampe, Y. Liu, Y. Yang, A.E. Lovett-Racke, Front. Neurol. 11 (2020) 19.
[56] R. Verma, J.Y. Kim, Neuroimmunomodulation 23 (2016) 75–80.
[57] J.-S. Kim, S.-Y. Ryu, I. Yun, W.-J. Kim, K.-S. Lee, J.-W. Park, Y.-I. Kim, J. Clin. Neurol. 2 (2006) 252–257.
[58] E. Garcion, L. Sindji, S. Nataf, P. Brachet, F. Darcy, C.N. Montero-Menei, Acta Neuropathol. 105 (2003) 438–448.
[59] E. Garcion, S. Nataf, A. Berod, F. Darcy, P. Brachet, Brain Res. Mol. Brain Res. 45 (1997) 255–267.
[60] N. Charoenngam, A. Shirvani, T.A. Kalajian, A. Song, M.F. Holick, Anticancer Res. 40 (2020) 551–556.
[61] L. Malaguarnera, Int. Immunopharmacol. 79 (2020) 106112.
[62] N. Naderpoor, A. Mousa, L. Fernanda Gomez Arango, H.L. Barrett, M. Dekker Nitert, B. de Courten, Nutrients 11 (2019).
[63] S. Ghaly, N.O. Kaakoush, F. Lloyd, T. McGonigle, D. Mok, A. Baird, B. Klopcic, L. Gordon, S. Gorman, C. Forest, R. Bouillon, I.C. Lawrance, P.H. Hart, Sci. Rep. 8 (2018) 11511.
[64] M. Bashir, B. Prietl, M. Tauschmann, S.I. Mautner, P.K. Kump, G. Treiber, P. Wurm, G. Gorkiewicz, C. Högenauer, T.R. Pieber, Eur. J. Nutr. 55 (2016) 1479–1489.
[65] M. Kanhere, J. He, B. Chassaing, T.R. Ziegler, J.A. Alvarez, E.A. Ivie, L. Hao, J. Hanfelt, A.T. Gewirtz, V. Tangpricha, J. Clin. Endocrinol. Metab. 103 (2018) 564–574.
[66] M. Garg, P. Hendy, J.N. Ding, S. Shaw, G. Hold, A. Hart, J. Crohns. Colitis 12 (2018) 963–972.
[67] L. Wang, J.E. Manson, Y. Song, H.D. Sesso, Ann. Intern. Med. 152 (2010) 315–323.
[68] A. Zittermann, S. Frisch, H.K. Berthold, C. Götting, J. Kuhn, K. Kleesiek, P. Stehle, H. Koertke, R. Koerfer, Am. J. Clin. Nutr. 89 (2009) 1321–1327.
[69] H. Dobnig, S. Pilz, H. Scharnagl, W. Renner, U. Seelhorst, B. Wellnitz, J. Kinkeldei, B.O. Boehm, G. Weihrauch, W. Maerz, Arch. Intern. Med. 168 (2008) 1340–1349.
[70] M.D. Witham, M.A. Nadir, A.D. Struthers, J. Hypertens. 27 (2009) 1948–1954.
[71] S. Nazarian, J.V. St Peter, R.C. Boston, S.A. Jones, C.N. Mariash, Transl. Res. 158 (2011) 276–281.
[72] A.M. Borissova, T. Tankova, G. Kirilov, L. Dakovska, R. Kovacheva, Int. J. Clin. Pract. 57 (2003) 258–261.
[73] K.E. Broe, T.C. Chen, J. Weinberg, H.A. Bischoff-Ferrari, M.F. Holick, D.P. Kiel, J. Am. Geriatr. Soc. 55 (2007) 234–239.
[74] Y. Sato, J. Iwamoto, T. Kanoko, K. Satoh, Cerebrovasc. Dis. 20 (2005) 187–192.
[75] H.A. Bischoff-Ferrari, W.C. Willett, J.B. Wong, A.E. Stuck, H.B. Staehelin, E.J. Orav, A. Thoma, D.P. Kiel, J. Henschkowski, Arch. Intern. Med. 169 (2009) 551–561.
[76] J.A. Messing, R. Heuberger, J.A. Schisa, Curr. Aging Sci. 6 (2013) 220–224.
[77] M. Singla, A. Rastogi, A.N. Aggarwal, O.M. Bhat, D. Badal, A. Bhansali, J. Diabetes 9 (2017) 1100–1106.
[78] A. Sinha, K.G. Hollingsworth, S. Ball, T. Cheetham, J. Clin. Endocrinol. Metab. 98 (2013) E509–13.
[79] L. Chen, R. Yang, W. Qiao, W. Zhang, J. Chen, L. Mao, D. Goltzman, D. Miao, Aging Cell 18 (2019) e12951.
[80] S. Tao, H. Zhang, L. Xue, X. Jiang, H. Wang, B. Li, H. Tian, Z. Zhang, Environ. Toxicol. 34 (2019) 594–609.
[81] H. Zhang, L. Xue, B. Li, Z. Zhang, S. Tao, Mol. Nutr. Food Res. 63 (2019) e1801014.
[82] Z. Rao, N. Zhang, N. Xu, Y. Pan, M. Xiao, J. Wu, H. Zhou, S. Yang, Y. Chen, Front. Immunol. 8 (2017) 1308.
[83] C.-G. Zhu, Y.-X. Liu, H. Wang, B.-P. Wang, H.-Q. Qu, B.-L. Wang, M. Zhu, Endocr. J. 64 (2017) 663–673.
[84] Z. Wang, H. Zhang, X. Sun, L. Ren, Mol. Med. Rep. 14 (2016) 2389–2396.
[85] A.S. Jiménez-Osorio, S. González-Reyes, J. Pedraza-Chaverri, Clin. Chim. Acta 448 (2015) 182–192.
[86] M.J. Berridge, Biochem. Soc. Trans. 43 (2015) 349–358.
[87] S. Christakos, P. Dhawan, A. Verstuyf, L. Verlinden, G. Carmeliet, Physiol. Rev. 96 (2016) 365–408.
[88] R.P. Heaney, M.S. Dowell, C.A. Hale, A. Bendich, J. Am. Coll. Nutr. 22 (2003) 142–146.
[89] P.M. Kidd, Altern. Med. Rev. 15 (2010) 199–222.