Alpha-glycerophosphocholine (Alpha-GPC)

COMMON NAME

Alpha-GPC | Glycerophosphocholine | Choline alphoscerate | L-alpha-glycerophosphocholine


TOP BENEFITS OF ALPHA-GPC

Supports cognitive function*

Supports exercise performance* 


WHAT IS ALPHA-GPC?

Alpha-glycerophosphocholine (alpha-GPC) is a choline-containing phospholipid that can be used to augment the body and brain choline pool. In this role it serves as a precursor for both acetylcholine and phosphatidylcholine biosynthesis. Alpha-GPC and citicoline (i.e., CDP-choline) are considered the nootropic forms of choline, with both forms able to increase brain choline levels, act as building blocks for acetylcholine, and support choline-dependent neurotransmission [1–4]. However, of the two, alpha-GPC contains a higher proportion of choline, so a lower dose of alpha-GPC gives greater choline support than a similar dose of citicoline [5–7]. This means that by weight alpha-GPC is the more efficient choline precursor. Following an oral dose, alpha-GPC metabolizes into choline and the phospholipid glycerophosphate. The choline can be used for acetylcholine synthesis and neurotransmission [3,8–14]. Acetylcholine is central to brain neurotransmission; it’s also used in both the fight or flight and rest and relax parts of the autonomic nervous system; and it is a signaling molecule for activating muscles. Because alpha-GPC is a precursor in the biosynthesis of acetylcholine, it plays a supportive role in a variety of cognitive functions, including attention, concentration, mental focus, and memory formation and recall [15]. Alpha-GPC also supports aspects of muscle performance, and is involved in maintaining organs and tissues. And, because alpha-GPC can be readily metabolized into phosphatidylcholine, it can be used to support the structure and function of cell membranes. Alpha-GPC is found in low amounts in a variety of foods [16] and in breast milk [17,18].* 


Qualia ALPHA-GPC SOURCING

Alpha-glycerophosphocholine (Alpha-GPC) is a source of choline; it is able to influence both systemic and brain concentrations of choline.

Alpha-GPC is derived from soy.

Neurohacker uses an Alpha-GPC that is sourced to be non-GMO, gluten-free, and vegan.


ALPHA-GPC DOSING PRINCIPLES AND RATIONALE

Alpha-glycerophosphocholine (Alpha-GPC) is by weight one of the best sources of choline. While alpha-GPC is often treated as if it’s dose-dependent (i.e., a higher dose is better) and doses of 1200 mg/day have been used in some clinical studies, Neurohacker believes the evidence suggests a threshold response (see Neurohacker Dosing Principles) when alpha-GPC is given to healthy people. This means that more might not be better under all circumstances. As an example, in a study of healthy college-aged men, while the higher dose (500 mg/day) of alpha-GPC did a better job increasing free choline levels, the lower dose (250 mg/day) produced a better peak muscle force response.[19] In general, Qualia experience with alpha-GPC (as well as citicoline) indicate that when used as part of comprehensive nootropic formulations, a more modest dose is often sufficient. Alpha-GPC is a useful choline source in liquids because of its taste and solubility. In general, the best time to take alpha-GPC is early in the day.*


ALPHA-GPC KEY MECHANISMS

Augments choline pool*

Alpha-GPC is part of the CDP-choline (or Kennedy) pathway, which has a central role in choline homeostasis [13,14]

Supports plasma choline levels [20]

Precursor for phosphatidylcholine synthesis [3]

Precursor for acetylcholine synthesis [2,3]

 

Supports brain function*

Supports memory and learning [7,27,36]

Supports attention [7,36]

Supports cognition [2,3,15,36,37]

Supports acetylcholine synthesis and release [2,3,21]

Supports vesicular acetylcholine transporter levels [21,22]

Supports high-affinity choline uptake transporter levels [22]

Protects from age-related changes in cholinergic neurotransmission [23]

Supports dopamine synthesis and release [1,24]

Supports dopamine plasma membrane transporter (DAT) levels [24]

Supports serotonin synthesis [24]

Supports GABA release [25]

Supports phospholipid synthesis [9,26]

Supports phosphoinositide synthesis [26,27]

Supports protein kinase C (PKC) activation [28–30]

Supports growth hormone secretion from the pituitary gland [10,20,31]

Counters some age-related brain microstructural changes [32–35]

Supports neuroprotective functions [2,3]


Promotes exercise performance*

Supports isometric force production [38]

Supports maximum power and velocity in jump movements [19]


Complementary ingredients*

CDP-choline, Uridine Monophosphate, Huperzine A, Bacopa monnieri, Celastrus paniculatus, Coleus forskohlii, Vitamin B5 in supporting cholinergic neurotransmission


*These statements have not been evaluated by the Food and Drug Administration.  This product is not intended to diagnose, cure, or prevent any disease.


REFERENCES 

[1] M. Trabucchi, S. Govoni, F. Battaini, Farmaco Sci. 41 (1986) 325–334.
[2] C.M. Lopez, S. Govoni, F. Battaini, S. Bergamaschi, A. Longoni, C. Giaroni, M. Trabucchi, Pharmacol. Biochem. Behav. 39 (1991) 835–840.
[3] S. Sigala, A. Imperato, P. Rizzonelli, P. Casolini, C. Missale, P. Spano, Eur. J. Pharmacol. 211 (1992) 351–358.
[4] N. Canal, Others, Le Basi Raz Ter 23 (1993) 102.
[5] R. Di Perri, G. Coppola, L.A. Ambrosio, A. Grasso, F.M. Puca, M. Rizzo, J. Int. Med. Res. 19 (1991) 330–341.
[6] G. Gatti, N. Barzaghi, G. Acuto, G. Abbiati, T. Fossati, E. Perucca, Int. J. Clin. Pharmacol. Ther. Toxicol. 30 (1992) 331–335.
[7] L. Parnetti, F. Mignini, D. Tomassoni, E. Traini, F. Amenta, J. Neurol. Sci. 257 (2007) 264–269.
[8] I.H. Ulus, R.J. Wurtman, C. Mauron, J.K. Blusztajn, Brain Res. 484 (1989) 217–227.
[9] G. Abbiati, T. Fossati, G. Lachmann, M. Bergamaschi, C. Castiglioni, Eur. J. Drug Metab. Pharmacokinet. 18 (1993) 173–180.
[10] G.P. Ceda, G.P. Marzani, V. Tontodonati, E. Piovani, A. Banchini, M.T. Baffoni, G. Valenti, A.R. Hoffman, in: Growth Hormone II, Springer New York, 1994, pp. 328–337.
[11] J.P. Fernández-Murray, C.R. McMaster, J. Biol. Chem. 280 (2005) 38290–38296.
[12] F. Amenta, S.K. Tayebati, D. Vitali, M.A. Di Tullio, Mech. Ageing Dev. 127 (2006) 173–179.
[13] Z. Li, D.E. Vance, J. Lipid Res. 49 (2008) 1187–1194.
[14] F. Gibellini, T.K. Smith, IUBMB Life 62 (2010) 414–428.
[15] N. Canal, M. Franceschi, M. Alberoni, C. Castiglioni, P. De Moliner, A. Longoni, Int. J. Clin. Pharmacol. Ther. Toxicol. 29 (1991) 103–107.
[16] S.H. Zeisel, M.-H. Mar, J.C. Howe, J.M. Holden, The Journal of Nutrition 133 (2003) 1302–1307.
[17] M.Q. Holmes-McNary, W.L. Cheng, M.H. Mar, S. Fussell, S.H. Zeisel, Am. J. Clin. Nutr. 64 (1996) 572–576.
[18] Y.O. Ilcol, R. Ozbek, E. Hamurtekin, I.H. Ulus, J. Nutr. Biochem. 16 (2005) 489–499.
[19] L. Marcus, J. Soileau, L.W. Judge, D. Bellar, J. Int. Soc. Sports Nutr. 14 (2017) 39.
[20] T. Kawamura, T. Okubo, K. Sato, S. Fujita, K. Goto, T. Hamaoka, M. Iemitsu, Nutrition 28 (2012) 1122–1126.
[21] S.K. Tayebati, D. Tomassoni, A. Di Stefano, P. Sozio, L.S. Cerasa, F. Amenta, J. Neurol. Sci. 302 (2011) 49–57.
[22] D. Tomassoni, A. Catalani, C. Cinque, M.A. Di Tullio, S.K. Tayebati, A. Cadoni, I.E. Nwankwo, E. Traini, F. Amenta, Curr. Alzheimer Res. 9 (2012) 120–127.
[23] F. Amenta, F. Franch, A. Ricci, J.A. Vega, Ann. N. Y. Acad. Sci. 695 (1993) 311–313.
[24] S.K. Tayebati, D. Tomassoni, I.E. Nwankwo, A. Di Stefano, P. Sozio, L.S. Cerasa, F. Amenta, CNS & Neurological Disorders - Drug Targets 12 (2013) 94–103.
[25] L. Ferraro, S. Tanganelli, L. Marani, C. Bianchi, L. Beani, A. Siniscalchi, Neurochem. Res. 21 (1996) 547–552.
[26] G. Aleppo, F. Nicoletti, M.A. Sortino, G. Casabona, U. Scapagnini, P.L. Canonico, Pharmacol. Toxicol. 74 (1994) 95–100.
[27] G. Schettini, C. Ventra, T. Florio, M. Grimaldi, O. Meucci, A. Scorziello, A. Postiglione, A. Marino, Pharmacol. Biochem. Behav. 43 (1992) 139–151.
[28] S. Govoni, F. Battaini, L. Lucchi, A. Pascale, M. Trabucchi, Ann. N. Y. Acad. Sci. 695 (1993) 307–310.
[29] L. Lucchi, A. Pascale, F. Battaini, S. Govoni, M. Trabucchi, Life Sci. 53 (1993) 1821–1832.
[30] S. Govoni, L. Lucchi, F. Battaini, M. Trabucchi, Life Sci. 50 (1992) PL125–8.
[31] G.P. Ceda, G. Ceresini, L. Denti, G. Marzani, E. Piovani, A. Banchini, E. Tarditi, G. Valenti, Horm. Metab. Res. 24 (1992) 119–121.
[32] F. Amenta, M. Del Valle, J.A. Vega, D. Zaccheo, Mech. Ageing Dev. 61 (1991) 173–186.
[33] A. Ricci, E. Bronzetti, J.A. Vega, F. Amenta, Mech. Ageing Dev. 66 (1992) 81–91.
[34] F. Amenta, F. Ferrante, J.A. Vega, D. Zaccheo, Prog. Neuropsychopharmacol. Biol. Psychiatry 18 (1994) 915–924.
[35] G. Muccioli, G.M. Raso, C. Ghé, R. Di Carlo, Prog. Neuropsychopharmacol. Biol. Psychiatry 20 (1996) 323–339.
[36] L. Parnetti, F. Amenta, V. Gallai, Mech. Ageing Dev. 122 (2001) 2041–2055.
[37] F. Amenta, A. Carotenuto, A.M. Fasanaro, R. Rea, E. Traini, J. Neurol. Sci. 322 (2012) 96–101.
[38] D. Bellar, N.R. LeBlanc, B. Campbell, J. Int. Soc. Sports Nutr. 12 (2015) 42.