Ginkgo | Maidenhair tree
Supports brain health and cognitive performance *
Supports neuroprotection *
Supports mood *
Supports vascular function *
Ginkgo biloba is one of the most widely used and researched herbs for brain health. G. biloba has been used in Traditional Chinese Medicine for several hundred years. Standardized extracts of G. biloba have been used since the mid-1960’s. The Ginkgo biloba tree is native to China and has been called a living fossil because it is the only surviving species of the order Ginkgoales that existed on earth 190 million years ago. The trees are very long-lived, with some specimens claimed to be as much as 1,500 years old. It contains several bioactive substances, including flavonoid glycosides such as quercetin, kaempferol and isorhamnetin, and terpene lactones such as ginkgolides A, B and C, and bilobalide. Through the action of these compounds, Ginkgo is able to support several neurotransmitter systems, support neurogenesis, and promote healthy vascular function and cerebral blood flow. G. biloba is best known for supporting attention, concentration, memory and mood [1].*
Ginkgo biloba extract is made from plants harvested in China and uses a 35:1 (or greater) herb to extract ratio.
Ginkgo biloba extract is standardized to contain 24% flavone glycosides and 6% terpene lactones.
Ginkgo biloba Leaf Extract is non-GMO and vegan.
We consider Ginkgo biloba to be an herbal adaptogen, so expect it to follow hormetic dosing principles. Herbal adaptogens tend to have a hormetic zone (or range) where there’s a favorable biological response. It’s important to be in this zone; it’s just as important not to be above it (see Neurohacker Dosing Principles). Therefore, it’s important to identify the lowest dose that can produce the desired responses when using Ginkgo biloba. In clinical trials, standardized Ginkgo biloba leaf extracts have most commonly been used at doses ranging from 120 mg to 240 mg/day. When used in combination with other ingredients, standardized Ginkgo biloba leaf extracts have been used at lower doses, most commonly between 50 and 120 mg/day. Since we’re using a standardized Ginkgo biloba leaf extract as part of a combination of ingredients with which it may have additive effects, we chose a dose in the range used in combination studies.*
Supports brain function and cognition*
Supports memory [2–6]
Supports working memory [3,7,8]
Supports attention [9,10]
Supports information processing speed [7,11]
Supports executive function [7]
Supports cognitive health [12–14]
Supports healthy cerebral blood flow [15–17]
Supports acetylcholine levels [18]
Influences anticholinesterase activity [19]
Supports dopamine levels [20,21]
Supports noradrenaline levels [20]
Supports serotonergic neurotransmission [22–24]
Supports neurogenesis [25–27]
Supports synaptogenesis [25]
Supports brain-derived neurotrophic factor (BDNF) [24,25,28,29]
Supports cyclic-AMP response element binding protein (CREB) activity [26]
Supports neuronal membrane fluidity [30]
Supports neuroprotective functions [31–35]
Supports healthy mood and stress response*
Supports a calm mood and positive affect [24,36–39]
Supports healthy stress responses and stress hormone levels (adaptogenic) [40,41]
Modulates the hypothalamic-pituitary-adrenal (HPA) axis [42]
Supports vascular health*
Supports healthy blood flow [43–46]
Supports endothelial function [47–51]
Supports vascular function [52–54]
Influences platelet-activating factor (PAF) activity [55–57]
Supports blood antioxidant capacity [29]
Promotes healthy aging and longevity*
Supports mitochondrial function [47,50,58–60]
Supports mitochondrial responses to age-related oxidative stress [61]
Complementary ingredients*
Ginger for mood support [62–65]
Ginseng for cognitive performance [66–71]
Rhodiola for cognitive performance [72]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.
[1]F.V. DeFeudis, Pharmacopsychiatry 36 Suppl 1 (2003) S2–7.
[2]D.O. Kennedy, P.A. Jackson, C.F. Haskell, A.B. Scholey, Hum. Psychopharmacol. 22 (2007) 559–566.
[3]U. Rigney, S. Kimber, I. Hindmarch, Phytother. Res. 13 (1999) 408–415.
[4]R. Kaschel, Phytomedicine 18 (2011) 1202–1207.
[5]Z. Subhan, I. Hindmarch, Int. J. Clin. Pharmacol. Res. 4 (1984) 89–93.
[6]J.A. Mix, W.D. Crews Jr, Hum. Psychopharmacol. 17 (2002) 267–277.
[7]C. Stough, J. Clarke, J. Lloyd, P.J. Nathan, Int. J. Neuropsychopharmacol. 4 (2001) 131–134.
[8]R.B. Silberstein, A. Pipingas, J. Song, D.A. Camfield, P.J. Nathan, C. Stough, Evid. Based. Complement. Alternat. Med. 2011 (2011) 164139.
[9]D.O. Kennedy, A.B. Scholey, K.A. Wesnes, Psychopharmacology 151 (2000) 416–423.
[10]S. Elsabagh, D.E. Hartley, O. Ali, E.M. Williamson, S.E. File, Psychopharmacology 179 (2005) 437–446.
[11]J.A. Mix, W.D. Crews Jr, J. Altern. Complement. Med. 6 (2000) 219–229.
[12]P.L. Le Bars, M.M. Katz, N. Berman, T.M. Itil, A.M. Freedman, A.F. Schatzberg, JAMA 278 (1997) 1327–1332.
[13]O. Napryeyenko, I. Borzenko, GINDEM-NP Study Group, Arzneimittelforschung 57 (2007) 4–11.
[14]R. Ihl, M. Tribanek, N. Bachinskaya, GOTADAY Study Group, Pharmacopsychiatry 45 (2012) 41–46.
[15]N. Kamkaew, C. Norman Scholfield, K. Ingkaninan, N. Taepavarapruk, K. Chootip, Phytother. Res. 27 (2013) 135–138.
[16]A. Mashayekh, D.L. Pham, D.M. Yousem, M. Dizon, P.B. Barker, D.D.M. Lin, Neuroradiology 53 (2011) 185–191.
[17]R.F. Santos, J.C. Galduróz, A. Barbieri, M.L. Castiglioni, L.Y. Ytaya, O.F. Bueno, Pharmacopsychiatry 36 (2003) 127–133.
[18]J. Kehr, S. Yoshitake, S. Ijiri, E. Koch, M. Nöldner, T. Yoshitake, Int. Psychogeriatr. 24 Suppl 1 (2012) S25–34.
[19]A. Das, G. Shanker, C. Nath, R. Pal, S. Singh, H. Singh, Pharmacol. Biochem. Behav. 73 (2002) 893–900.
[20]T. Yoshitake, S. Yoshitake, J. Kehr, Br. J. Pharmacol. 159 (2010) 659–668.
[21]K.-Y. Yeh, C.-H. Wu, M.-Y. Tai, Y.-F. Tsai, Neuroscience 189 (2011) 199–206.
[22]F. Huguet, K. Drieu, A. Piriou, J. Pharm. Pharmacol. 46 (1994) 316–318.
[23]F. Bolaños-Jiménez, R. Manhães de Castro, H. Sarhan, N. Prudhomme, K. Drieu, G. Fillion, Fundam. Clin. Pharmacol. 9 (1995) 169–174.
[24]Z.-H. Liang, Y.-B. Jia, M.-L. Wang, Z.-R. Li, M. Li, Y.-L. Yun, R.-X. Zhu, Neuropsychiatr. Dis. Treat. 15 (2019) 2551–2557.
[25]F. Tchantchou, P.N. Lacor, Z. Cao, L. Lao, Y. Hou, C. Cui, W.L. Klein, Y. Luo, J. Alzheimers. Dis. 18 (2009) 787–798.
[26]F. Tchantchou, Y. Xu, Y. Wu, Y. Christen, Y. Luo, FASEB J. 21 (2007) 2400–2408.
[27]G.-H. Jin, Z. Huang, X.-F. Tan, M.-L. Tian, X.-H. Zhang, J.-B. Qin, H.-J. Xu, D.T. Yew, Y.T. Mak, Cell Biol. Int. 30 (2006) 500–504.
[28]X.Y. Zhang, W.-F. Zhang, D.-F. Zhou, D.C. Chen, M.H. Xiu, H.-R. Wu, C.N. Haile, T.A. Kosten, T.R. Kosten, Biol. Psychiatry 72 (2012) 700–706.
[29]E. Sadowska-Krępa, B. Kłapcińska, I. Pokora, P. Domaszewski, K. Kempa, T. Podgórski, Nutrients 9 (2017).
[30]C. Ramassamy, F. Girbe, Y. Christen, J. Costentin, Free Radic. Res. Commun. 19 (1993) 341–350.
[31]M. Jahanshahi, E.G. Nickmahzar, F. Babakordi, Anat. Sci. Int. 88 (2013) 217–222.
[32]M. Jahanshahi, E. Nikmahzar, N. Yadollahi, K. Ramazani, Anat. Cell Biol. 45 (2012) 92–96.
[33]E.-J. Lee, H.-Y. Chen, T.-S. Wu, T.-Y. Chen, I.A. Ayoub, K.I. Maynard, J. Neurosci. Res. 68 (2002) 636–645.
[34]S. Saleem, H. Zhuang, S. Biswal, Y. Christen, S. Doré, Stroke 39 (2008) 3389–3396.
[35]L. Zhu, J. Wu, H. Liao, J. Gao, X.N. Zhao, Z.X. Zhang, Zhongguo Yao Li Xue Bao 18 (1997) 344–347.
[36]H. Woelk, K.H. Arnoldt, M. Kieser, R. Hoerr, J. Psychiatr. Res. 41 (2007) 472–480.
[37]R. Hoerr, Pharmacopsychiatry 36 Suppl 1 (2003) S56–61.
[38]P. Rojas, N. Serrano-García, O.N. Medina-Campos, J. Pedraza-Chaverri, S.O. Ogren, C. Rojas, Neurochem. Int. 59 (2011) 628–636.
[39]C.-X. Dai, C.-C. Hu, Y.-S. Shang, J. Xie, Medicine 97 (2018) e12421.
[40]J.R. Rapin, I. Lamproglou, K. Drieu, F.V. Defeudis, General Pharmacology: The Vascular System 25 (1994) 1009–1016.
[41]D. Jezova, R. Duncko, M. Lassanova, M. Kriska, F. Moncek, J. Physiol. Pharmacol. 53 (2002) 337–348.
[42]A. Marcilhac, N. Dakine, N. Bourhim, V. Guillaume, M. Grino, K. Drieu, C. Oliver, Life Sci. 62 (1998) 2329–2340.
[43]J. Mehlsen, H. Drabaek, N. Wiinberg, K. Winther, Clin. Physiol. Funct. Imaging 22 (2002) 375–378.
[44]E. Boelsma, R.-J.A.N. Lamers, H.F.J. Hendriks, J.H.J. van Nesselrooij, L. Roza, Planta Med. 70 (2004) 1052–1057.
[45]Y.-Z. Wu, S.-Q. Li, X.-G. Zu, J. Du, F.-F. Wang, Phytother. Res. 22 (2008) 734–739.
[46]Y. Wu, S. Li, W. Cui, X. Zu, J. Du, F. Wang, Phytomedicine 15 (2008) 164–169.
[47]H.-C. Ou, W.-J. Lee, I.-T. Lee, T.-H. Chiu, K.-L. Tsai, C.-Y. Lin, W.H.-H. Sheu, J. Appl. Physiol. 106 (2009) 1674–1685.
[48]H.-C. Ou, Y.-L. Hsieh, N.-C. Yang, K.-L. Tsai, K.-L. Chen, C.-S. Tsai, I.-J. Chen, B.-T. Wu, S.-D. Lee, J. Appl. Physiol. 114 (2013) 274–285.
[49]S.V. Pierre, P. Lesnik, M. Moreau, L. Bonello, M.-T. Droy-Lefaix, S. Sennoune, M.-J. Duran, T.A. Pressley, J. Sampol, J. Chapman, J.-M. Maixent, Cell. Mol. Biol. 54 Suppl (2008) OL1032–42.
[50]D. Janssens, C. Michiels, E. Delaive, F. Eliaers, K. Drieu, J. Remacle, Biochem. Pharmacol. 50 (1995) 991–999.
[51]C. Zhang, D.-F. Wang, Z. Zhang, D. Han, K. Yang, J. Microbiol. Biotechnol. 27 (2017) 584–590.
[52]M. Rodríguez, L. Ringstad, P. Schäfer, S. Just, H.W. Hofer, M. Malmsten, G. Siegel, Atherosclerosis 192 (2007) 438–444.
[53]J.-Y. Tsai, K.-H. Su, S.-K. Shyue, Y.R. Kou, Y.-B. Yu, S.-H. Hsiao, A.-N. Chiang, Y.-L. Wu, L.-C. Ching, T.-S. Lee, Cardiovasc. Res. 88 (2010) 415–423.
[54]J. Tian, Y. Liu, K. Chen, Curr. Vasc. Pharmacol. 15 (2017) 532–548.
[55]E. Koch, Phytomedicine 12 (2005) 10–16.
[56]M. Akisü, N. Kültürsay, I. Coker, A. Hüseyinov, Biol. Neonate 74 (1998) 439–444.
[57]H.-J. Liao, Y.-F. Zheng, H.-Y. Li, G.-P. Peng, Planta Med. 77 (2011) 1818–1821.
[58]A. Eckert, U. Keil, S. Kressmann, K. Schindowski, S. Leutner, S. Leutz, W.E. Müller, Pharmacopsychiatry 36 Suppl 1 (2003) S15–23.
[59]D. Janssens, J. Remacle, K. Drieu, C. Michiels, Biochem. Pharmacol. 58 (1999) 109–119.
[60]G. Du, K. Willet, A. Mouithys-Mickalad, C.M. Sluse-Goffart, M.T. Droy-Lefaix, F.E. Sluse, Free Radic. Biol. Med. 27 (1999) 596–604.
[61]J. Sastre, A. Millán, J. García de la Asunción, R. Plá, G. Juan, Pallardó, E. O’Connor, J.A. Martin, M.T. Droy-Lefaix, J. Viña, Free Radic. Biol. Med. 24 (1998) 298–304.
[62]R.U. Hasenöhrl, C.H. Nichau, C.H. Frisch, M.A. De Souza Silva, J.P. Huston, C.M. Mattern, R. Häcker, Pharmacol. Biochem. Behav. 53 (1996) 271–275.
[63]R.U. Hasenöhrl, B. Topic, C. Frisch, R. Häcker, C.M. Mattern, J.P. Huston, Pharmacol. Biochem. Behav. 59 (1998) 527–535.
[64]B. Topic, R.U. Hasenöhrl, R. Häcker, J.P. Huston, Phytother. Res. 16 (2002) 312–315.
[65]B. Topic, E. Tani, K. Tsiakitzis, P.N. Kourounakis, E. Dere, R.U. Hasenöhrl, R. Häcker, C.M. Mattern, J.P. Huston, Neurobiol. Aging 23 (2002) 135–143.
[66]K.A. Wesnes, T. Ward, A. McGinty, O. Petrini, Psychopharmacology 152 (2000) 353–361.
[67]A.B. Scholey, D.O. Kennedy, Hum. Psychopharmacol. 17 (2002) 35–44.
[68]D.O. Kennedy, A.B. Scholey, K.A. Wesnes, Physiol. Behav. 75 (2002) 739–751.
[69]K.A. Wesnes, R.A. Faleni, N.R. Hefting, G. Hoogsteen, J.J. Houben, E. Jenkins, J.H. Jonkman, J. Leonard, O. Petrini, J.J. van Lier, Psychopharmacol. Bull. 33 (1997) 677–683.
[70]G.Z. Steiner, A. Yeung, J.-X. Liu, D.A. Camfield, F.M. de Blasio, A. Pipingas, A.B. Scholey, C. Stough, D.H. Chang, BMC Complement. Altern. Med. 16 (2016) 15.
[71]M. Yakoot, A. Salem, S. Helmy, Clin. Interv. Aging 8 (2013) 975–981.
[72]H.M. Al-Kuraishy, J Intercult Ethnopharmacol 5 (2016) 7–13.